Las microvellosidades incrementan más de 20 veces la absorción de las células intestinales. Imagen capturada a 10.000 aumentos. Fuente CME-UNC.
En la película, a partir de la cual Isaac Asimov escribió luego su novela homónima, el científico Jan Benes se encontraba inconsciente con un hematoma en el cerebro, tras un intento de asesinato. Un equipo médico, a bordo del navío Proteus, era reducido a dimensiones microscópicas e introducido en su cuerpo para curar el tejido dañado y salvarlo. ¿El desafío? Su misión no debía demorar más de 60 minutos, porque al cabo de ese tiempo recuperaría su tamaño normal.
> Leer también: Cosmecéutica, la ciencia “anti-age”.
Lejos de la cuota de suspenso del celuloide y el glamour cinematográfico, los microscopios electrónicos brindan hoy -con su potencial para amplificar visualmente más de 600.000 veces las muestras- la posibilidad de observar en primer plano las células humanas, superando ampliamente los 1.000 aumentos que ofrecen los microscopios ópticos comunes. Su extraordinaria capacidad los ha convertido en una herramienta esencial para el diagnóstico preciso de patologías neuromuscularles, renales, respiratorias y de reproducción masculina, entre otras.
Es esta una de las áreas de trabajo del Centro de Microscopía Electrónica (CME) de la Universidad Nacional de Córdoba, donde, desde 2005, funciona un microscopio electrónico de transmisión Zeiss Leo 906-E. “La microscopía electrónica es fundamental para determinar el diagnóstico de ciertas patologías en tipos celulares específicos, como muestras de espermatozoides, enfermedades del riñón, tracto respiratorio o de tejidos musculares”, explica a InfoUniversidades Alicia Torres, directora del CME. Ocurre que, a nivel subcelular, determinadas enfermedades forman ciertas estructuras que sólo logran identificarse a esa escala de magnificación.
Una lupa de electrones
En términos simples, un microscopio electrónico de transmisión es un tubo que trabaja en alto vacío, con un ánodo en un extremo y un cátodo en el otro. Al descargar una corriente eléctrica de alto voltaje sobre un filamento de tungsteno, se genera un haz de electrones que recorre toda la columna. En el trayecto existen lentes magnéticas que centran el haz donde está ubicado el espécimen que se desea observar y magnifican la imagen que se visualiza sobre una pantalla cubierta de fósforo.
Las piezas biológicas son coloreadas con metales pesados, que rechazan los electrones, de modo que la imagen que se observa en la pantalla está formada por los electrones que pudieron atravesar el tejido (ver fotografías).
El procesamiento de los tejidos para su análisis requiere de precauciones extremas, al punto que la muestra debe llegar a los especialistas “como si todavía formara parte del tejido vivo”, apunta Torres. Y completa: “Segundos después de haber sido extraída, debe ser colocada en soluciones fijadoras que, entre otras cosas, inmovilizan las proteínas estableciendo enlaces químicos con ellas, de forma tal que conserven la estructura que tenían in vivo”.
Esos materiales continúan distintos tratamientos, como posfijaciones, inclusiones en resinas epóxicas que les proporcionarán elasticidad y resistencia cuando son sometidos a cortes ultrafinos con cuchillas de cristal o diamante. El espesor de los cortes oscila entre los 80 y los 100 nanómetros (un nanómetro equivale a la millonésima parte de un milímetro). Así, desde la obtención de la muestra hasta la imagen, el proceso puede demandar más de una semana de trabajo.
> Leer también: Nueva técnica de control de la radiación en el tratamiento del cáncer.
El CME es un ámbito de trabajo interdisciplinario donde convergen bioquímicos, biólogos y médicos y, en la actualidad, es el único instituto en Córdoba que realiza estudios de este tipo. Como dato, desde enero se analizaron allí alrededor de 300 muestras humanas para identificación de diferentes patologías. A éstas se suma un importante número de muestras semanales que se procesan en el marco de proyectos de investigación.
Microfotografía de la enfermedad de la membrana basal.